Title: | Create Publication Quality Tables and Plots |
---|---|
Description: | Create publication quality plots and tables for Item Response Theory and Classical Test theory based item analysis, exploratory and confirmatory factor analysis. |
Authors: | Mushfiqul Anwar Siraji [aut, cre]
|
Maintainer: | Mushfiqul Anwar Siraji <[email protected]> |
License: | MIT + file LICENSE |
Version: | 1.0.0 |
Built: | 2025-02-26 04:02:03 UTC |
Source: | https://github.com/masiraji/tabledown |
This function will help you to calculate the time a person spent in bed based on their sleep log. This type of calculation is very common in sleep research. However, as one can guess, working with dates in R is a bit tricky. This function will ease the task. More importantly you do not require to entry the dates to calculate bed time. Just wake up time and time to go to bed is enough (24 hour format).
bedTime(x, y)
bedTime(x, y)
x |
A vector containing time to do to bed. |
y |
A vector containing time of wake. |
Calculates time spent in bed in hours. Output class is numeric.
#Please use 24 hour format. #Easiest way is to enter the data as character. bed <-c("20:00", "21:00", "23:00") wake <-c("6:00", "7:00", "8:00") bedtime <- bedTime(bed, wake)
#Please use 24 hour format. #Easiest way is to enter the data as character. bed <-c("20:00", "21:00", "23:00") wake <-c("6:00", "7:00", "8:00") bedtime <- bedTime(bed, wake)
This function will create publication worthy tables with CFA fit indices from lavaan class object.
cfa.tab(x, robust = FALSE)
cfa.tab(x, robust = FALSE)
x |
A lavaan class object. |
robust |
If TRUE, will provide robust fit indices when applicable instead of the default indices. |
Often researchers are required to show fit indices from several CFA models. This function will create publication worthy tables with CFA fit indices from several lavaan class objects. #' To run this function successfully one need to provide at least two lavaan objects. This command supports up-to five lavaan models.
cfa.tab.multi(x, y, z = NULL, a = NULL, b = NULL, robust = FALSE)
cfa.tab.multi(x, y, z = NULL, a = NULL, b = NULL, robust = FALSE)
x |
first object of class lavaan (Mandatory). |
y |
second object of class lavaan (Mandatory). |
z |
third object of class lavaan (Optional). |
a |
fourth object of class lavaan (Optional). |
b |
fifth object of class lavaan (Optional). |
robust |
If TRUE, will provide robust fit indices when applicable instead of the default indices. |
This function will create a publication ready essential descriptive table for item analysis. Normality is tested using shapiro.test from base stats with Bonferroni Correction.
des.tab(df, reverse = FALSE)
des.tab(df, reverse = FALSE)
df |
A data frame. |
reverse |
If TRUE, will provide indicate which items had a negative correlation and reverse them |
Returns a summary table of descriptives in a data frame structure.
data <- tabledown::Rotter[, 11:31] table <- des.tab(data)
data <- tabledown::Rotter[, 11:31] table <- des.tab(data)
This function will create publication worthy factor tables from objects created from psych pack. I have came across this beautiful piece of codes at https://www.anthonyschmidt.co/post/2020-09-27-efa-tables-in-r/ and modified it a bit.
fac.tab(x, cut, complexity = TRUE)
fac.tab(x, cut, complexity = TRUE)
x |
A psych package object. |
cut |
The value under which all factor loading will be suppressed. |
complexity |
To add complexity parameters. |
A publication ready summary table for the Factor analysis conducted by psych Package. Output structure is data frame.
data <- tabledown::Rotter[, 11:31] correlations <- psych::polychoric(data, correct = 0) fa.5F.1 <- psych::fa(r=correlations$rho, nfactors = 5, fm= "pa",rotate ="varimax", residuals = TRUE, SMC = TRUE, n.obs =428) table <- fac.tab(fa.5F.1, .3) #always save the output into an object
data <- tabledown::Rotter[, 11:31] correlations <- psych::polychoric(data, correct = 0) fa.5F.1 <- psych::fa(r=correlations$rho, nfactors = 5, fm= "pa",rotate ="varimax", residuals = TRUE, SMC = TRUE, n.obs =428) table <- fac.tab(fa.5F.1, .3) #always save the output into an object
This is the structural validation data of Bangla Five Facet Mindfulness Questionnaire
FFMQ.CFA
FFMQ.CFA
A data frame with 277 rows and 47 variables:
ID
double COLUMN_DESCRIPTION
Gender
character COLUMN_DESCRIPTION
Education
character COLUMN_DESCRIPTION
Education Years
double COLUMN_DESCRIPTION
Income
double COLUMN_DESCRIPTION
Profession
character COLUMN_DESCRIPTION
Marital Status
character COLUMN_DESCRIPTION
Social_status
double COLUMN_DESCRIPTION
item1
double COLUMN_DESCRIPTION
item2
double COLUMN_DESCRIPTION
Ritem3
double COLUMN_DESCRIPTION
item4
double COLUMN_DESCRIPTION
Ritem5
double COLUMN_DESCRIPTION
item6
double COLUMN_DESCRIPTION
item7
double COLUMN_DESCRIPTION
Ritem8
double COLUMN_DESCRIPTION
item9
double COLUMN_DESCRIPTION
Ritem10
double COLUMN_DESCRIPTION
item11
double COLUMN_DESCRIPTION
Ritem12
double COLUMN_DESCRIPTION
Ritem13
double COLUMN_DESCRIPTION
Ritem14
double COLUMN_DESCRIPTION
item15
double COLUMN_DESCRIPTION
Ritem16
double COLUMN_DESCRIPTION
Ritem17
double COLUMN_DESCRIPTION
Ritem18
double COLUMN_DESCRIPTION
item19
double COLUMN_DESCRIPTION
item20
double COLUMN_DESCRIPTION
item21
double COLUMN_DESCRIPTION
Ritem22
double COLUMN_DESCRIPTION
Ritem23
double COLUMN_DESCRIPTION
item24
double COLUMN_DESCRIPTION
Ritem25
double COLUMN_DESCRIPTION
item26
double COLUMN_DESCRIPTION
item27
double COLUMN_DESCRIPTION
Ritem28
double COLUMN_DESCRIPTION
item29
double COLUMN_DESCRIPTION
Ritem30
double COLUMN_DESCRIPTION
item31
double COLUMN_DESCRIPTION
item32
double COLUMN_DESCRIPTION
item33
double COLUMN_DESCRIPTION
Ritem34
double COLUMN_DESCRIPTION
Ritem35
double COLUMN_DESCRIPTION
item36
double COLUMN_DESCRIPTION
item37
double COLUMN_DESCRIPTION
Ritem38
double COLUMN_DESCRIPTION
Ritem39
double COLUMN_DESCRIPTION
https://github.com/masiraji/tabledown/tree/main/data-raw
Correlational based Valididity evidence of Bangla FFMQ
FFMQ.Val
FFMQ.Val
A data frame with 255 rows and 106 variables:
id
double COLUMN_DESCRIPTION
Age
double COLUMN_DESCRIPTION
Gender
double COLUMN_DESCRIPTION
Education Years
double COLUMN_DESCRIPTION
Profession
character COLUMN_DESCRIPTION
Marital Status
character COLUMN_DESCRIPTION
Social_Status
double COLUMN_DESCRIPTION
item1
double COLUMN_DESCRIPTION
item2
double COLUMN_DESCRIPTION
Ritem3
double COLUMN_DESCRIPTION
item4
double COLUMN_DESCRIPTION
Ritem5
double COLUMN_DESCRIPTION
item6
double COLUMN_DESCRIPTION
item7
double COLUMN_DESCRIPTION
Ritem8
double COLUMN_DESCRIPTION
item9
double COLUMN_DESCRIPTION
Ritem10
double COLUMN_DESCRIPTION
item11
double COLUMN_DESCRIPTION
Ritem12
double COLUMN_DESCRIPTION
Ritem13
double COLUMN_DESCRIPTION
Ritem14
double COLUMN_DESCRIPTION
item15
double COLUMN_DESCRIPTION
Ritem16
double COLUMN_DESCRIPTION
Ritem17
double COLUMN_DESCRIPTION
Ritem18
double COLUMN_DESCRIPTION
item19
double COLUMN_DESCRIPTION
item20
double COLUMN_DESCRIPTION
item21
double COLUMN_DESCRIPTION
Ritem22
double COLUMN_DESCRIPTION
Ritem23
double COLUMN_DESCRIPTION
item24
double COLUMN_DESCRIPTION
Ritem25
double COLUMN_DESCRIPTION
item26
double COLUMN_DESCRIPTION
item27
double COLUMN_DESCRIPTION
Ritem28
double COLUMN_DESCRIPTION
item29
double COLUMN_DESCRIPTION
Ritem30
double COLUMN_DESCRIPTION
item31
double COLUMN_DESCRIPTION
item32
double COLUMN_DESCRIPTION
item33
double COLUMN_DESCRIPTION
Ritem34
double COLUMN_DESCRIPTION
Ritem35
double COLUMN_DESCRIPTION
item36
double COLUMN_DESCRIPTION
item37
double COLUMN_DESCRIPTION
Ritem38
double COLUMN_DESCRIPTION
Ritem39
double COLUMN_DESCRIPTION
EI1
character COLUMN_DESCRIPTION
EI2
character COLUMN_DESCRIPTION
EI3
character COLUMN_DESCRIPTION
EI4
character COLUMN_DESCRIPTION
EI5
character COLUMN_DESCRIPTION
EI6
character COLUMN_DESCRIPTION
EI7
character COLUMN_DESCRIPTION
EI8
character COLUMN_DESCRIPTION
EI9
character COLUMN_DESCRIPTION
EI10
character COLUMN_DESCRIPTION
EI11
character COLUMN_DESCRIPTION
EI12
character COLUMN_DESCRIPTION
EI13
character COLUMN_DESCRIPTION
EI14
character COLUMN_DESCRIPTION
EI15
character COLUMN_DESCRIPTION
EI16
character COLUMN_DESCRIPTION
EI17
character COLUMN_DESCRIPTION
EI18
character COLUMN_DESCRIPTION
EI19
character COLUMN_DESCRIPTION
EI20
character COLUMN_DESCRIPTION
EI21
character COLUMN_DESCRIPTION
EI22
character COLUMN_DESCRIPTION
EI23
character COLUMN_DESCRIPTION
EI24
character COLUMN_DESCRIPTION
EI25
character COLUMN_DESCRIPTION
EI26
character COLUMN_DESCRIPTION
EI27
character COLUMN_DESCRIPTION
EI28
character COLUMN_DESCRIPTION
EI29
character COLUMN_DESCRIPTION
EI30
character COLUMN_DESCRIPTION
EI31
character COLUMN_DESCRIPTION
EI32
character COLUMN_DESCRIPTION
EI33
character COLUMN_DESCRIPTION
EI34
character COLUMN_DESCRIPTION
O1
character COLUMN_DESCRIPTION
O2
character COLUMN_DESCRIPTION
O3
character COLUMN_DESCRIPTION
O4
character COLUMN_DESCRIPTION
O5
character COLUMN_DESCRIPTION
O6
character COLUMN_DESCRIPTION
O7
character COLUMN_DESCRIPTION
O8
character COLUMN_DESCRIPTION
O9
character COLUMN_DESCRIPTION
O10
character COLUMN_DESCRIPTION
E1
character COLUMN_DESCRIPTION
E2
character COLUMN_DESCRIPTION
E3
character COLUMN_DESCRIPTION
E4
character COLUMN_DESCRIPTION
E5
character COLUMN_DESCRIPTION
E6
character COLUMN_DESCRIPTION
E7
character COLUMN_DESCRIPTION
E8
character COLUMN_DESCRIPTION
N1
character COLUMN_DESCRIPTION
N2
character COLUMN_DESCRIPTION
N3
character COLUMN_DESCRIPTION
N4
character COLUMN_DESCRIPTION
N5
character COLUMN_DESCRIPTION
N6
character COLUMN_DESCRIPTION
N7
character COLUMN_DESCRIPTION
N8
character COLUMN_DESCRIPTION
https://github.com/masiraji/tabledown/tree/main/data-raw
Demo project breakdown to create Gantt
Gantt
Gantt
A data frame with 25 rows and 4 variables:
wp
character Main Component
activity
character Activities
start_date
character Start Date
end_date
character End Date
https://github.com/masiraji/tabledown/tree/main/data-raw
This function will create publication worthy Item Response Theory based item characteristic plot using ggplot2 from objects created from mirt pack. Using ggplot2 will enable the user to modify the item characteristic plot.
ggicc(model, item, theta)
ggicc(model, item, theta)
model |
A mirt package fitted object. |
item |
Item number (i.e. 1,2,3,4). |
theta |
Theta range. Put only one number. Theta =3 will be considered as theta range (-3 to 3). |
A publication quality item characteristic plot. Output object is a ggplot object.
data <- tabledown::Rotter[, 11:31] model <- mirt::mirt(data, model = 1, itemtype = '2PL', SE = TRUE, Se.type = 'MHRM') plot <- tabledown::ggicc(model, 1, 3)
data <- tabledown::Rotter[, 11:31] model <- mirt::mirt(data, model = 1, itemtype = '2PL', SE = TRUE, Se.type = 'MHRM') plot <- tabledown::ggicc(model, 1, 3)
This function will create publication worthy Item Response Theory based item information plot. using ggplot2 from objects created from mirt pack.
ggiteminfo(model, item, theta)
ggiteminfo(model, item, theta)
model |
A mirt package fitted object. |
item |
Item number (i.e. 1,2,3,4). |
theta |
Theta range. Put only one number. Theta =3 will be considered as theta range (-3 to 3). |
A publication quality item information plot.Output object is a ggplot object.
data <- tabledown::Rotter[, 11:31] model <- mirt::mirt(data, model = 1, itemtype = '2PL') plot <- ggiteminfo(model, 1, 3)
data <- tabledown::Rotter[, 11:31] model <- mirt::mirt(data, model = 1, itemtype = '2PL') plot <- ggiteminfo(model, 1, 3)
This function will create publication worthy Item Response Theory based based reliability plot with standard error using ggplot2 from objects created from mirt pack. Using ggplot2 will enable the user to modify the Item plot.
ggreliability(dataframe, model)
ggreliability(dataframe, model)
dataframe |
your data. |
model |
A mirt package fitted object. |
A publication quality reliability plot (dashed line). Output object is a ggplot object.
data <- tabledown::Rotter[, 11:31] model <- mirt::mirt(data, model = 1, itemtype = '2PL') plot <- ggreliability(data, model)
data <- tabledown::Rotter[, 11:31] model <- mirt::mirt(data, model = 1, itemtype = '2PL') plot <- ggreliability(data, model)
This function will create Item Response Theory based based reliability plot with standard error using ggplot2 and plotly from objects created from mirt pack. Using ggplot2 will enable the user to modify the Item plot.
ggreliability_plotly(dataframe, model)
ggreliability_plotly(dataframe, model)
dataframe |
your data. |
model |
A mirt package fitted object. |
A publication quality reliability plot (dashed line). Output object is a ggplot object.
data <- tabledown::Rotter[, 11:31] model <- mirt::mirt(data, model = 1, itemtype = '2PL') plot <- ggreliability_plotly(data, model)
data <- tabledown::Rotter[, 11:31] model <- mirt::mirt(data, model = 1, itemtype = '2PL') plot <- ggreliability_plotly(data, model)
This function will create publication worthy Item Response Theory based Test information plot using ggplot2 from objects created from mirt pack. Using ggplot2 will enable the user to modify the Item plot.
ggtestinfo(dataframe, model)
ggtestinfo(dataframe, model)
dataframe |
your data. |
model |
A mirt package fitted object. |
A publication quality Test information plot. Output object is a ggplot object.
data <- tabledown::Rotter[, 11:31] model <- mirt::mirt(data, model = 1, itemtype = '2PL') plot <- ggtestinfo(data, model)
data <- tabledown::Rotter[, 11:31] model <- mirt::mirt(data, model = 1, itemtype = '2PL') plot <- ggtestinfo(data, model)
This function will create publication worthy Item Response Theory based Test information plot with standard error using ggplot2 from objects created from mirt pack. Using ggplot2 will enable the user to modify the Item plot.
ggtestinfo_se(dataframe, model)
ggtestinfo_se(dataframe, model)
dataframe |
your data. |
model |
A mirt package fitted object. |
A publication quality Test information plot with standard error (dashed line). Output object is a ggplot object.
data <- tabledown::Rotter[, 11:31] model <- mirt::mirt(data, model = 1, itemtype = '2PL') plot <- ggtestinfo(data, model)
data <- tabledown::Rotter[, 11:31] model <- mirt::mirt(data, model = 1, itemtype = '2PL') plot <- ggtestinfo(data, model)
This function will create Item Response Theory based Test information plot with standard error using ggplot2 and plotly from objects created from mirt pack. Using ggplot2 will enable the user to modify the Item plot.
ggtestinfo_se_ploty(dataframe, model)
ggtestinfo_se_ploty(dataframe, model)
dataframe |
your data. |
model |
A mirt package fitted object. |
A publication quality Test information plot with standard error (dashed line). Output object is a ggplot object.
data <- tabledown::Rotter[, 11:31] model <- mirt::mirt(data, model = 1, itemtype = '2PL') plot <- ggtestinfo_se_ploty(data, model)
data <- tabledown::Rotter[, 11:31] model <- mirt::mirt(data, model = 1, itemtype = '2PL') plot <- ggtestinfo_se_ploty(data, model)
This function will gtExtra package friendly data summary using the datafrmae provided psych pack.
gt_tab(dataframe, recode_code)
gt_tab(dataframe, recode_code)
dataframe |
Dataframe with all items. |
recode_code |
Recode key |
A publication ready descriptive summary table in png format.
data <- tabledown::FFMQ.CFA[, c(9,10,12,14)] recode_code <- c( "1" = "Never or very rarely true", "2" = "Rarely true", "3"= "Sometimes true","4" = "Often true","5" = "Very often or always true") sample_tab <- gt_tab(data,recode_code)
data <- tabledown::FFMQ.CFA[, c(9,10,12,14)] recode_code <- c( "1" = "Never or very rarely true", "2" = "Rarely true", "3"= "Sometimes true","4" = "Often true","5" = "Very often or always true") sample_tab <- gt_tab(data,recode_code)
This function will compute normality on entire data set. Sometime in dlookr package p values turns out to be null thus failing to test normality of the data set. This is a good alternative of dlookr function. Here normality is tested using shapiro.test from base stats.
normality.loop(df, bonf = TRUE, alpha = 0.05)
normality.loop(df, bonf = TRUE, alpha = 0.05)
df |
A data frame. |
bonf |
If TRUE a bonferonni correction will be conducted. |
alpha |
Desired alpha. |
Provides normality tests results for all columns in a wide data frame in a list format.
data <- tabledown::Rotter[, 11:31] normality.loop(data)
data <- tabledown::Rotter[, 11:31] normality.loop(data)
This is the validation data of Bangla Rotter's Internal and External Scale.
Rotter
Rotter
A data frame with 478 rows and 91 variables:
id
double Id
sample
character EFA or CEA
Age
double Age
Gender
character Gender
Educational Status
character Educational Status
Education Years
double COLUMN_DESCRIPTION
Income
double COLUMN_DESCRIPTION
Religion
double COLUMN_DESCRIPTION
Marital Status
double COLUMN_DESCRIPTION
Social Stance
double COLUMN_DESCRIPTION
item2
double COLUMN_DESCRIPTION
item3
double COLUMN_DESCRIPTION
item4
double COLUMN_DESCRIPTION
item5
double COLUMN_DESCRIPTION
item6
double COLUMN_DESCRIPTION
item7
double COLUMN_DESCRIPTION
item9
double COLUMN_DESCRIPTION
item10
double COLUMN_DESCRIPTION
item11
double COLUMN_DESCRIPTION
item12
double COLUMN_DESCRIPTION
item13
double COLUMN_DESCRIPTION
item15
double COLUMN_DESCRIPTION
item16
double COLUMN_DESCRIPTION
item17
double COLUMN_DESCRIPTION
item18
double COLUMN_DESCRIPTION
item20
double COLUMN_DESCRIPTION
item21
double COLUMN_DESCRIPTION
item22
double COLUMN_DESCRIPTION
item23
double COLUMN_DESCRIPTION
item25
double COLUMN_DESCRIPTION
item26
double COLUMN_DESCRIPTION
item28
double COLUMN_DESCRIPTION
item29
double COLUMN_DESCRIPTION
O1
double COLUMN_DESCRIPTION
O2
double COLUMN_DESCRIPTION
O3
double COLUMN_DESCRIPTION
O4
double COLUMN_DESCRIPTION
O5
double COLUMN_DESCRIPTION
O6
double COLUMN_DESCRIPTION
O7
double COLUMN_DESCRIPTION
O8
double COLUMN_DESCRIPTION
O9
double COLUMN_DESCRIPTION
O10
double COLUMN_DESCRIPTION
Total_Opennes
double COLUMN_DESCRIPTION
E1
double COLUMN_DESCRIPTION
E2
double COLUMN_DESCRIPTION
E3
double COLUMN_DESCRIPTION
E4
double COLUMN_DESCRIPTION
E5
double COLUMN_DESCRIPTION
E6
double COLUMN_DESCRIPTION
E7
double COLUMN_DESCRIPTION
E8
double COLUMN_DESCRIPTION
Total_Extro
double COLUMN_DESCRIPTION
N1
double COLUMN_DESCRIPTION
N2
double COLUMN_DESCRIPTION
N3
double COLUMN_DESCRIPTION
N4
double COLUMN_DESCRIPTION
N5
double COLUMN_DESCRIPTION
N6
double COLUMN_DESCRIPTION
N7
double COLUMN_DESCRIPTION
N8
double COLUMN_DESCRIPTION
Total_Neuro
double COLUMN_DESCRIPTION
DIR1
double COLUMN_DESCRIPTION
DIR2
double COLUMN_DESCRIPTION
DI3
double COLUMN_DESCRIPTION
DIR4
double COLUMN_DESCRIPTION
DI5
double COLUMN_DESCRIPTION
DIR6
double COLUMN_DESCRIPTION
DI7
double COLUMN_DESCRIPTION
DIR8
double COLUMN_DESCRIPTION
DI9
double COLUMN_DESCRIPTION
DI10
double COLUMN_DESCRIPTION
DIR11
double COLUMN_DESCRIPTION
DI12
double COLUMN_DESCRIPTION
DI13
double COLUMN_DESCRIPTION
DIR14
double COLUMN_DESCRIPTION
DI15
double COLUMN_DESCRIPTION
DI16
double COLUMN_DESCRIPTION
DIR17
double COLUMN_DESCRIPTION
DI18
double COLUMN_DESCRIPTION
DIR19
double COLUMN_DESCRIPTION
DI20
double COLUMN_DESCRIPTION
DI21
double COLUMN_DESCRIPTION
DIR22
double COLUMN_DESCRIPTION
DIR23
double COLUMN_DESCRIPTION
DIR24
double COLUMN_DESCRIPTION
DI25
double COLUMN_DESCRIPTION
DIR26
double COLUMN_DESCRIPTION
DIR27
double COLUMN_DESCRIPTION
DI28
double COLUMN_DESCRIPTION
DI_Total
double COLUMN_DESCRIPTION
https://github.com/masiraji/tabledown/tree/main/data-raw
Additional demo data for GanTT
Spot
Spot
A data frame with 29 rows and 3 variables:
activity
character Activity
spot_type
character Progress Status
spot_date
character Date of Reporting Progress
https://github.com/masiraji/tabledown/tree/main/data-raw
The tabledown package provides necessary data frames used throughout the book and some neat functions.
Rotter: Psychometric validation data of Bangla Rotter's Internal- External Scale.
Gantt and Spot: Two sample data-frames for creating project management Gantt chart.
FFMQ.CFA: Structural Validation data of Bangla Five Factor Mindfulness Questionnaire.
FFMQ.Val:Correlational Validity evidences of Bangla Five Factor Mindfulness Questionnaire.
This packages includes some neat and useful functions to create tables and figures suitable for journal submission:
fac.tab(): Creates a publication ready table from the output of "psych" package based factor analysis.
des.tab(): Creates a publication ready descriptive table of Item analysis with the reporting of normality assumptions.
normality.loop(): Compute normality test on the whole data frame. No grouping variable required.
bedTime(): Calculate total time spent in bed from the sleep log entry.
cfa.tab():Creates a table with necessary fit indices from a "lavaan" class objects.
cfa.tab/multi():creates a table with necessary fit indices from several lavaan class objects.
ggicc: Creates a ggplot2 based publication ready Item Characteristics Curve from the "mirt" package based item response theory estimations.
ggiteminfo: Creates a ggplot2 based publication ready Item Information Curve from the "mirt" package based item response theory estimations.
ggtestinfo: Creates a ggplot2 based publication ready Test Information Curve from the "mirt" package based item response theory estimations.
ggtestinfo_se: Creates a ggplot2 based publication ready Test Information Curve with standard error from the "mirt" package based item response theory estimations. It is advisable that you load tidyverse along with tabledown